Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nat Commun ; 12(1): 7083, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1555251

ABSTRACT

The availability of viral entry factors is a prerequisite for the cross-species transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Large-scale single-cell screening of animal cells could reveal the expression patterns of viral entry genes in different hosts. However, such exploration for SARS-CoV-2 remains limited. Here, we perform single-nucleus RNA sequencing for 11 non-model species, including pets (cat, dog, hamster, and lizard), livestock (goat and rabbit), poultry (duck and pigeon), and wildlife (pangolin, tiger, and deer), and investigated the co-expression of ACE2 and TMPRSS2. Furthermore, cross-species analysis of the lung cell atlas of the studied mammals, reptiles, and birds reveals core developmental programs, critical connectomes, and conserved regulatory circuits among these evolutionarily distant species. Overall, our work provides a compendium of gene expression profiles for non-model animals, which could be employed to identify potential SARS-CoV-2 target cells and putative zoonotic reservoirs.


Subject(s)
Atlases as Topic , Single-Cell Analysis/veterinary , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Birds , Cell Communication , Evolution, Molecular , Gene Regulatory Networks , Host-Pathogen Interactions , Lung/cytology , Lung/metabolism , Lung/virology , Mammals , Receptors, Virus/genetics , Receptors, Virus/metabolism , Reptiles , SARS-CoV-2/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Transcriptome , Viral Tropism , Virus Internalization
2.
Nat Commun ; 12(1): 4543, 2021 07 27.
Article in English | MEDLINE | ID: covidwho-1328844

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) is a global health emergency. Various omics results have been reported for COVID-19, but the molecular hallmarks of COVID-19, especially in those patients without comorbidities, have not been fully investigated. Here we collect blood samples from 231 COVID-19 patients, prefiltered to exclude those with selected comorbidities, yet with symptoms ranging from asymptomatic to critically ill. Using integrative analysis of genomic, transcriptomic, proteomic, metabolomic and lipidomic profiles, we report a trans-omics landscape for COVID-19. Our analyses find neutrophils heterogeneity between asymptomatic and critically ill patients. Meanwhile, neutrophils over-activation, arginine depletion and tryptophan metabolites accumulation correlate with T cell dysfunction in critical patients. Our multi-omics data and characterization of peripheral blood from COVID-19 patients may thus help provide clues regarding pathophysiology of and potential therapeutic strategies for COVID-19.


Subject(s)
COVID-19/genetics , COVID-19/metabolism , Critical Illness , Genomics/methods , Humans , Lipidomics/methods , Metabolomics/methods , Neutrophils/metabolism , Transcriptome/genetics
3.
Intensive Care Med Exp ; 9(1): 13, 2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-1133613

ABSTRACT

PURPOSE: Critically ill COVID-19 patients have significantly increased risk of death. Although several circulating biomarkers are thought to be related to COVID-19 severity, few studies have focused on the characteristics of critically ill patients with different outcomes. The objective of this study was to perform a longitudinal investigation of the potential mechanisms affecting the prognosis of critically ill COVID-19 patients. METHODS: In addition to clinical data, 113 whole blood samples and 85 serum samples were collected from 33 severe and critical COVID-19 patients without selected comorbidities. Multi-omics analysis was then performed using longitudinal samples. RESULTS: Obvious transcriptional transitions were more frequent in critical survivors than in critical non-survivors, indicating that phase transition may be related to survival. Based on analysis of differentially expressed genes during transition, the erythrocyte differentiation pathway was significantly enriched. Furthermore, clinical data indicated that red blood cell counts showed greater fluctuation in survivors than in non-survivors. Moreover, declining red blood cell counts and hemoglobin levels were validated as prognostic markers of poor outcome in an independent cohort of 114 critical COVID-19 patients. Protein-metabolite-lipid network analysis indicated that tryptophan metabolism and melatonin may contribute to molecular transitions in critical COVID-19 patients with different outcomes. CONCLUSIONS: This study systematically and comprehensively depicted the longitudinal hallmarks of critical COVID-19 patients and indicated that multi-omics transition may impact the prognosis. TAKE HOME MESSAGE: Frequent transcriptional phase transitions may contribute to outcome in critically ill COVID-19 patients. Furthermore, fluctuation in red blood cell and hemoglobin levels may relate to poor prognosis. The biological function of melatonin was suppressed in COVID-19 non-survivors, which may provide a potential theoretical basis for clinical administration.

SELECTION OF CITATIONS
SEARCH DETAIL